Ex-Vivo Ballistic Transfer Tumor Gene Therapy 

Tumor growth is, among many factors, a result of the failure of the body´s immune system to recognize and eliminate the cancer cells, which are growing out of order. Tumor gene therapy, or rather "cancer immunotherapy by gene therapy means", tries to address this situation by provoking an immune response against the tumor cells. Whereas chemotherapy is aimed at reducing tumor mass and eliminating cells by an extraneous chemical treatment, immunotherapy tries to recruit the body´s self-defense in the elimination of the tumor by actively attacking it.

Ex-vivo therapy uses material obtained by a surgical intervention. The tumor cells are treated in such a way that they manufacture certain stimulatory substances which turn on the immune system. These treated cancer cells are then rendered unable to multiply and are given back to the patient. Once within the patient, they would elicit a strong immune response against themselves by virtue of the stimulatory messages they send out. The idea is that by learning to attack the manipulated cells, the immune system aquires the knowledge about the tumor in general and eliminates all residual cancer cells, thus effectively healing the patient.

What is our special approach?

We use a method to get the genes into the tumor cells that relies on gold bombardment of the cells. Onto the gold projectiles that we bring into the cells, we adsorb genetic messages for the stimulatory molecules, and magnetic particles that allow us to separate the cells from unwanted byproducts. We have developed a separation process (Ballistomagnetic Vector System) which enables purification of the treated cells, leading to high initial stimuli to the immune system. Other proprietary inventions are a nozzle for the gene gun and procedure protocols that enable the use of the gene gun technology for clinical purposes. Several of these developments are patented by MOLOGEN.

Glossary Overview











Molecular Medicine 

Molecular medicine is a medical discipline that combines achievements and methods from such diverse areas as molecular biology, genetics and cell biology. Molecular medicine hopes to tackle the root cause of a condition, not to just ameliorate its symptoms.

The ”Molecular” in the term molecular medicine is best explained in view of the vast knowledge obtained in recent years that relates to molecular structures in cells and organisms. Today it is often possible to nail down the pathogenic, or disease-causing, components of a virus to the very last atom. Thereby, mechanisms can be suggested to tackle any affliction at the molecular level. Unfortunately, the discovery of the genetic or molecular makeup of a virus does not necessarily mean that science has understood the way a virus makes people sick. The rational design of a cure from this knowledge is even further away. But the step-by-step unraveling of the molecular mechanisms will bring science closer to this goal.

One of the most exciting aspects of molecular medicine is the use of genetic information in the treatment of disease. DNA or RNA is transferred into the patient´s cells; the genetic message is then read and used by the body to whatever medical purpose it was introduced to achieve. This is called gene therapy.

Glossary Overview










Gene Therapie 

Most diseases have to do with genes at some level. Sometimes the genes are that of a foreign organism trying to invade, as in a virus or a bacteria-born disease such as tuberculosis, or even malaria. In other conditions, it might be the body´s own genes that cease to work together as they were designed to, leading to cancer or autoimmune disease. Genetic diseases in the classic sense, meaning a defect in a gene leading to problems early or later in life, are relatively rare but sometimes very disabling to those afflicted by them.

Gene therapy is a general term for all approaches to disease management and -prevention that make use of straight genetic information, rather than its products. So if someone is given interferon (the protein) to treat Multiple Sclerosis, that would be a ”classic” pharmaceutical approach, whereas giving genes into the same patient that somehow induce his cells to manufacture interferon, would be considered gene therapy.

A number of different applications have been tried during the last years. Substitution therapy tries to bring a gene into the patient to substitute a faulty or deficient gene. Severe Combined Immunodeficiency and Cystic Fibrosis have been targets of this approach. A problem there might be to bring the gene into the right cells, and express it in the right amount.

Immunomodulatory Gene Therapy tries to employ genes for components of the immune system to modify immune responses in the patient. Many ”self-made pharmaceuticals”, i.e. cytokines, that the body uses to manage its immune system can be used to boost immune responses against cancer or infection, leading to approaches like the ex-vivo cancer therapy that MOLOGEN is working on. Giving the same cytokines directly into the bloodstream can lead to dramatic side effects, whereas the local directed dosage attained by manipulating the right cells in the right way, can achieve a cure.

In conditions ranging from arthritis to stroke, gene therapy could offer great advantages by reversing the mechanism explained above, scavenging immunomodulatory molecules by production of blunted receptors.

Germline Gene Therapy, the correction of genetic defects that run in families, is technically far away and ethically very controversial. It means the correction of a genetic defect in the cells that make up the embryo, thus forming an individual that has a genetic makeup different to what a combination of its parent's genes would have been. A lot of questions from ethic and scientific backgrounds need to be answered before even the option of such treatment could be discussed. MOLOGEN is not performing any research in this direction.


Glossary Overview











Genetic Vaccination

A field related to gene therapy, and a just-as-hot-development, is genetic vaccination in which genetic information about a pathogenic organism, i.e. virus or bacterium, is introduced into the patient. The patient subsequently develops an immunological reaction against the bug, never having been exposed to more than the genetic blueprint of it. This offers cheaper, faster, safer and in many ways more efficient vaccines to all major infections, even to some for which no vaccines have been developed yet. Another hope is to be able to direct the immune system to mount an attack with the so-called cytotoxic system. The immune system can attack an invading virus or bacterium by two ways; employing either its so- called "humoral" (i.e. antibody-mediated) or its cytotoxic defense forces. Conventional vaccines mainly work through the antibody response, but there is ample evidence that the cytotoxic response may in many infections be superior or complementary to the antibody response. Modern ways of vaccine design, furthermost genetic vaccination, offer ways to direct the immune response towards the cytotoxic response.

Glossary Overview











Mologen hat bereits vor einiger Zeit eine mittlerweile experimentell bestätigte Problematik im Zusammenhang mit genetischen Impfstoffen vorausgesehen. Die üblicherweise für die genetische Impfung eingesetzten Genfähren enthalten nämlich konstruktionsbedingt zusätzliche Erbinformationen, die für die eigentliche Impfung nicht erwünscht sind. Solche zusätzlichen Erbinformationen vermitteln zum Beispiel Resistenz gegen Antibiotika in Bakterien. Diese überflüssigen Erbinformationen können möglicherweise zu schädlichen Nebenwirkungen führen. 

Mologen hat folglich neuartige Genfähren, sogenannte Genpakete, entwickelt, mit denen sich nur die für die Impfung tatsächlich notwendigen Informationen einschleusen lassen. Sowohl das hinter den Genpaketen stehende Konstruktionsprinzip, als auch das Verfahren des Einschleusens (Transfektion) der Erbsubstanz wurde von Mologen weltweit zum Patent angemeldet. 

Zusätzlich erlaubt das Konstruktionsprinzip der Genpakete, sie mit anderen Pharmaka so zu verbinden, daß eine gezielte Verabreichung nur an bestimmte Zellen möglich scheint. Es handelt sich also im Inhalt und in der Verpackung um echte "Designer-Gene". 

Glossary Overview











Zur erfolgreichen Arbeit in der Molekularen Medizin bedarf es der effektiven Nutzung der exponentiell wachsenden Fülle an Wissen über die Erbinformationen. Dies wird durch die Bioinformatik geleistet. Die Bioinformatik ist eine junge Disziplin, die sich im Laufe der letzten zehn Jahre in ihrer heutigen Form entwickelt hat. Sie bezieht Impulse zum einen aus der Informatik und Mathematik, zum anderen aus den Biowissenschaften und der Medizin. Der Wert der Bioinformatik für die Pharmaforschung wurde in jüngster Zeit von vielen Firmen erkannt. Große Unternehmen in der Pharmabranche haben begonnen, Bioinformatikabteilungen aufzubauen. 

Die Motivation, Bioinformatik einzusetzen, ist zunächst recht profaner Natur: Herkömmliche experimentelle Verfahren zur Aufklärung von Funktion oder Wirkungsweise von Erbinformationen sind arbeitsaufwendig und zeitintensiv - und damit sehr teuer. Computergestützte Verfahren hingegen sind schnell und billig. Der Einsatz von Bioinformatik zur Optimierung oder vollständigen Vermeidung experimenteller Verfahren ist deswegen ein wichtiger wirtschaftlicher Faktor. 

Hinzu kommt die Notwendigkeit, die Fülle der neuanfallenden Daten, die zum Beispiel durch die Genomprojekte erzeugt werden, zu organisieren, zu analysieren und zu interpretieren. Diese Aufgabe ist nur durch Computerhilfe zu bewältigen. So werden schon seit dem Ende der sechziger Jahre entschlüsselte Erbinformationen in großen (und ständig wachsenden) Datenbanken gesammelt und zugänglich gemacht. Mit Hilfe bioinformatischer Verfahren können solche Datenbanken herangezogen werden, um Erkenntnisse über Struktur und Funktion unbekannter Erbinformationen zu gewinnen. 

Glossary Overview